

RFView[™] User Manual Version 2.0 April 2017

Introduction

RFView[™] is an advanced, cloud-based, site-specific, radio frequency simulation and analysis environment. The simulation environment is built on ISL's industry-leading Splatter, Clutter, and Target Signal (SCATS) RF phenomenology engine. SCATS has successfully supported numerous R&D projects for a wide range of Government and industry customers since 1989. Radar data simulated using ISL's models have been used by numerous researchers around the world to develop and evaluate signal processing algorithms and the data sets have been cited in thousands of journal articles.

It was one of the earliest site-specific radio frequency (RF) phenomenology analysis tools to provide an accurate characterization of complex RF environments. Uses of the model include system analysis, test planning, high-fidelity synthetic data generation, and signal processing algorithm development. The model provides characterization of target returns, direct path signal, ground scattered signal (clutter for radar), direct path signals from interferers, and ground scattered interference signals (hot clutter, splatter, or terrain-scattered interference).

 $RFView^{TM}$ allows users to enter the simulation parameters in a web interface and then submit a job which is run remotely on a high performance computer cluster to ensure timely simulation results. Thus, no special computing software and hardware is required. When the simulation is completed, the user receives an email notification and can view the data on the RFViewTM website. The data is also available for download in both Matlab binary format as well as KML format for easy display and analysis using Google Earth.

Version 2.0 of RFViewTM now provides the user with the capability to easily set up a simulation with multiple CPIs along a flight path as well as provides a capability to simulate a bistatic scenario.

This user manual will guide a user through the process of setting up, running, and examining the results of a simulation. All that is required is a RFViewTM user account and web access. The RFViewTM login page can be found at <u>https://rfview.islinc.com</u>.

Defining the Simulation Scenario

When the user logs into their RFViewTM account, the first page that comes up is the RFViewTM Dashboard shown in Figure 1. This gives the options to start a new simulation, access previous simulations, update billing information or update user information. All of these options are also available on the left of the page.

Figure 1: RFViewTM **Dashboard**

For this guide the first step will be to set up a new simulation, which is done by selecting the new simulation option. The screen should appear as shown in Figure 2. The radar parameters for a default scenario will be loaded into the appropriate fields. A Google Maps interface is provided that allows a user to select the location of the radar, antenna aimpoint, and targets. The positions are defined on the map by selecting the proper button and then dragging the marker to the desired location. The coordinates may also be entered manually in the menu to the right. Similarly targets may be added to the simulation. Selecting the add target button places the target on the map and the icon may be dragged to the desired location. By selecting the target tab, the user can manually enter the target heading, speed, and radar cross section.

Figure 3 and Figure 4 show the input menus. Parameters may be entered in each of the fields as appropriate. Definitions for each of the fields are given in Table 1.

Figure 2: RFViewTM **Simulation Input Screen**

	II		
Bistatic	Bistatic		
Radar Receiver Latitude (deg N)	Frequency (MHz)		
32.55081581013565	10000		
Radar Receiver Longitude (deg E)	Num. Pulses		
-117.20513256835937	65		
Radar Receiver Altitude (m)	PRF (Hz)		
1000	2100		
Radar Receiver Speed (m/s)	Range Swath (km)		
125	20		
Radar Receiver Heading (deg. re. N)	Bandwidth (MHz)		
0	5		
Length EW (m)	Duty Factor		
20000	0.1		
Length NS (m)	Antenna Size Horizontal (m)		
20000	0.75		
Cell EW (m)	Antenna Size Vertical (m)		
20	0.25		
Cell NS (m)	Antenna Number Channels		
20	4		
AimPoint Latitude (deg N)	Transmitter Power (W)		
32.69337247479041	1000		
AimPoint Longitude (deg E)			
-118.99295910844554			

Figure 3: RFView[™] Input Menus for scene and radar parameters.

Geometry Radar Target Options	Geometry Radar Target Options
Bistatic	Bistatic
Target select: 1 💌 Remove Target Target Latitude (deg N)*	V IQ Data
32.69202574663938	Channel Response
Target Longitude (deg E)*	RTEMES Output
Target Speed (m/s)	Enable Cluster
3	Baid Earth
180	Simulate Multiple CPIs
Target RCS (square meters)	Number of Plat Positions
40	1
Target Altitude (meters)	Length of Plat Trajectory
100	0
	Spotlight

Figure 4: RFViewTM **Input Menus for options and targets.**

Geometry	Radar	Target	Options
Bistatic			
Enable Bist	tatic		
Transmit Latit	tude (deg l	N)	
0			
Transmit Long	gitude (de	g E)	
0			
Transmit Altit	ude (m)		
0			
Transmit Spe	ed (m/s)		
0			
Transmit Head	ding (deg.	re.N)	
<u>^</u>			

Figure 5: RFView[™] Input Menu for Bistatic Option

Name	Definition	Units	Default Value
Geometry			
Radar Receiver	Latitude of radar receiver platform; also	Degrees	32.5508
Latitude	transmitter for monostatic case.	North	
Radar Receiver	Longitude of radar receiver platform	Degrees	-117.2051
Longitude	(negative for degrees west); also	East	
	transmitter for monostatic case.		
Radar Receiver	Radar receiver altitude above MSL; also	Meters	1000
Altitude	transmitter for monostatic case.		
Radar Receiver Speed	Radar receiver platform speed; also	m/s	125
	transmitter for monostatic case.		
Radar Receiver	Radar receiver platform heading (0° is due	Degrees	0
Heading	north); also transmitter for monostatic	North	
	case.		
Length EW	Scene size in east-west dimension	Meters	20000
Length NS	Scene size in north-south dimension	Meters	20000
Cell EW	Size of simulation cell in east-west	Meters	20
	dimension		
Cell NS	Size of simulation cell in north-south	Meters	20
	dimension		
AimPoint Latitude	Location on earth surface where radar is	Degrees	32.6934
	pointed – this defines the antenna boresite.	North	
	Also is center of scene defined by Length		
AimPoint Longitude	Location on earth surface where radar is	Degrees	-116.9929
	pointed – this defines the antenna boresite.	East	
	Also is center of scene defined by Length		
Radar Parameters			
Frequency	Radar frequency	MHz	10,000
Num Pulses	Number of pulses to be simulated	Integer	65
PRF	Pulse repetition frequency	Hz	2100
Range Swath	Range dimension of simulated radar data –	Km	20
	range swath is centered on aimpoint		
Bandwidth	Radar bandwidth – defines radar resolution	MHz	5
Duty factor	Radar duty factor – fraction of time in	Fraction	0.1
	pulse repetition interval that is occupied by	e.g. 0.1 is	
	transmitted waveform	10% of	
		PRI	
Antenna Size	Size of antenna in horizontal dimension	Meters	0.75
Horizontal			
Antenna Size Vertical	Size of antenna in vertical dimension	Meters	0.25
Antenna Number of	Number of channels in horizontal	Integer	4
Channels	dimension which are equally spaced.		
	Assumes on channel in vertical dimension		

 Table 1: RFViewTM Input Parameters

Transmitter Power	Power of transmitter	Watts	1000
Options			
IQ Data	Simulate and save complex (I&Q) radar data	Check box	Checked
Channel Response	Simulate and save channel response	Check	Checked
RTEMES Output	Simulate and save data file for input into ISL RTEMES radar emulation system	Check	Not selected
Enable Cluster	Enable cluster processing – runs simulation in parallel on multiple cluster nodes. Can speed up larger simulations	Check box	Not selected
Bald Earth	Bald earth terrain model – all terrain is set to zero elevation	Check box	Not selected
Simulate Multiple CPIs	Enables multiple CPIs to be simulated in one run	Check box	Not selected
Number of Plat Positions	Number of platform positions along the trajectory to simulate	Number	1
Length of trajectory	Length of trajectory to simulate; positions are equally spaced along the trajectory	Meters	0
Spotlight	Spotlight mode keeps antenna pointed at defined aimpoint; otherwise aimpoint moves along with aircraft at a fixed antenna pointing angle	Check box	Not selected
Target Menu			
Target Menu Target select	Drop down menu to select target ID – multiple targets can be added to the simulation		1
Target Menu Target select Target Latitude	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target	Degrees	1 32.9874
Target MenuTarget selectTarget LatitudeTarget Longitude	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target Longitude of target	Degrees North Degrees East	1 32.9874 -83.7739
Target MenuTarget selectTarget LatitudeTarget LongitudeTarget Speed	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target Longitude of target Speed of target	Degrees North Degrees East m/s	1 32.9874 -83.7739 3
Target MenuTarget selectTarget LatitudeTarget LongitudeTarget SpeedTarget Heading	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target Longitude of target Speed of target Direction of travel of target relative to North (0° is due north)	Degrees North Degrees East m/s Degrees North	1 32.9874 -83.7739 3 180
Target MenuTarget selectTarget LatitudeTarget LongitudeTarget SpeedTarget HeadingTarget RCS	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target Longitude of target Speed of target Direction of travel of target relative to North (0° is due north) Target radar cross section	Degrees North Degrees East m/s Degrees North Square meters	1 32.9874 -83.7739 3 180 40
Target MenuTarget selectTarget LatitudeTarget LongitudeTarget SpeedTarget HeadingTarget RCSTarget Altitude	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target Longitude of target Speed of target Direction of travel of target relative to North (0° is due north) Target radar cross section Height of target above local terrain	Degrees North Degrees East m/s Degrees North Square meters Meters	1 32.9874 -83.7739 3 180 40
Target MenuTarget selectTarget LatitudeTarget LongitudeTarget SpeedTarget HeadingTarget RCSTarget AltitudeBistatic Menu	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target Longitude of target Speed of target Direction of travel of target relative to North (0° is due north) Target radar cross section Height of target above local terrain	Degrees North Degrees East m/s Degrees North Square meters Meters	1 32.9874 -83.7739 3 180 40
Target MenuTarget selectTarget LatitudeTarget LongitudeTarget SpeedTarget HeadingTarget RCSTarget AltitudeBistatic MenuEnable bistatic	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target Longitude of target Speed of target Direction of travel of target relative to North (0° is due north) Target radar cross section Height of target above local terrain Check box to select bistatic simulation; enables transmitter inputs below; also provides marker option on map.	Degrees North Degrees East m/s Degrees North Square meters Meters Check box	1 32.9874 -83.7739 3 180 40 Not selected
Target MenuTarget selectTarget LatitudeTarget LongitudeTarget SpeedTarget HeadingTarget RCSTarget AltitudeBistatic MenuEnable bistaticRadar TransmitterLatitude	Drop down menu to select target ID – multiple targets can be added to the simulation Latitude of target Longitude of target Speed of target Direction of travel of target relative to North (0° is due north) Target radar cross section Height of target above local terrain Check box to select bistatic simulation; enables transmitter inputs below; also provides marker option on map. Latitude of radar transmitter platform	Degrees North Degrees East m/s Degrees North Square meters Meters Meters Check box Degrees North	1 32.9874 -83.7739 3 180 40 Not selected 0

Radar Transmitter	Radar transmitter altitude above MSL	Meters	0
Altitude			
Radar Transmitter	Radar transmitter platform speed	m/s	0
Speed			
Radar Transmitter	Radar transmitter platform heading (0° is	Degrees	0
Heading	due north)	North	

Table 1: \mathbf{RFView}^{T}	^M Input Parameters
--	-------------------------------

RFViewTM is a site specific simulation which takes the local environment into consideration. This local environment includes the height of the terrain as well as the land cover of the local terrain. The local terrain height impacts the propagation (e.g. line-of-sight blockage) as well as the scattering due to the local tilt of the terrain. RFViewTM hosts a data base that contains digital elevation models (DEM) derived from the Shuttle Radar Topographic Mission (SRTM, see <u>http://www2.jpl.nasa.gov/srtm/</u> for details). This data is available from the USGS Earth Explorer site (<u>https://earthexplorer.usgs.gov/</u>). Figure 6 shows the coverage of the DEM data available in RFViewTM at the current time. Coverage areas are continually being updated with new areas of interest being added. Please make a data request if DEM data is desired in an area not currently covered. If the DEM data for the simulation scene is not available, the local terrain height is set to zero.

In some cases the user may wish to not use the terrain elevation data in the simulation. In this case, the bald earth option may be selected. If this option is selected, all the terrain heights in the simulation are set to zero.

The simulation area is defined by the Length EW and Length NS variables which define the scene size in meters in the east-west and north-south dimension. The simulation resolution in this area is set by the Cell EW and Cell NS variables, also in meters. A smaller resolution cell results in a higher resolution simulation, to a point, and also a longer run time. Two other factors determine the limiting resolution of the simulation. The waveform bandwidth defines the achievable resolution of the radar system in the range dimension. Also the resolution of the underlying terrain and land use/land cover databases also impacts the achievable simulation resolution. Currently the input databases are one arc-second resolution, approximately 30m post spacing. Cell spacing below half this value (15 m) will not result in a more accurate simulation, but smaller cell sizes on the order of the radar resolution can be used.

Figure 6: Current areas of available terrain height in RFView[™].

Two new capabilities have been added in RFViewTM Version 2. These are the capability to simulate multiple coherent processing intervals (CPIs) along a trajectory and a capability to simulate a bistatic system.

By selecting the Simulate Multiple CPIs option (see Figure 4) the option to define the number of CPIs and the length of the trajectory is available for input. The processing code will automatically generate a simulation for each CPI, equally spaced along the trajectory. The trajectory is defined as a straight and level flight at the defined heading and speed. Each simulation is available for download with the filename suffix *_n#, where # is the CPI number along the trajectory.

Below the trajectory parameters, is the option for spotlight mode. When the spotlight mode is selected, the aimpoint is fixed at its initial location. At each new CPI position, the antenna pointing direction is updated to point at the same aimpoint. If it is not selected (i.e. stripmap mode), the antenna pointing angle is fixed and the aimpoint and scene are moved along with the aircraft. The new aimpoint is the same heading and range from the radar at the new CPI position as was the original aimpoint. Figure 7 shows a diagram of the two options.

Figure 7: Diagram showing spotlight and stripmap modes.

The option for a bistatic simulation is also available. By selecting the bistatic option, as in Figure 8, the menu provides the opportunity to input the transmitter location, speed, heading, and altitude. It also enables the add transmitter button below the map region. This provides a transmitter icon that can be dragged to the desired location, just as with the monostatic option.

For the bistatic scenarios, the antenna pointing angles are steered toward the aimpoint. If the multiple CPI option is selected, the spotlight option is selected by default and the aimpoint is fixed and each antenna is steered to the aimpoint as the platforms move along the trajectory.

Figure 8: Enabling the bistatic option allows the input of the transmitter platform parameters.

Submitting the Simulation

Once the input of the simulation parameters is complete, selecting the submit button on the bottom right of the input screen submits the simulation for processing. A dialog box will be displayed (Figure 9) confirming the simulation has been submitted.

By selecting the "My Simulations" tab on the left, the user will be brought to the simulation history page. This page lists all the simulations submitted by the user as well as the simulation ID number, status, and options to edit the scenario (useful to make changes to a previous scenario and resubmit) and to view the results of a completed scenario. Figure 10 shows an example. When the scenario has completed simulation the user will receive an email with a link to $RFView^{TM}$ to examine the results.

LA JOLLA		Radar Latitude (deg N)
PACIFIC BEAC	Simulation Submission Completed	× deg E)
	The simulation has been successfully added to the process queue.	37
C	You will be notified via email when processing is complete and your of Most simulations are completed within the hour but can take longer of parameters.	downloads are ready. depending on supplied
	Once completed, the results can be accessed through the "My Simu	lations" link. N)
		Close
Google M	p des \$2018 Google INEGI 10 km - Terms of User Report a map error	Length NS (m)
Add Padar	Add Target	20000
Auurkauar	Add Ann-Oric	Cell EW (m)
Load Default Sce	narios Select Default Scenario	20

Figure 9: Simulation submission confirmation.

ISL RFView Online Tools					
Search Q					
8 Dashboard					
Simulation	Simulation	on History			
Simulations	Select User Select a	a User 💌			
\$ Billing	Show 25 🗸 entri	ies s	Search:		
➡ Reports	Batch ID 🗢 🗘	Submittal Date 🗸 🗸	Status 🗢 💠	View Results 🗢 🕸	Edit ‡ \$
	245	11-14-2016 09:13	Processing	View Results	Edit
	244	11-14-2016 08:21	Processing	View Results	Edit
	233	11-09-2016 11:00	Completed	View Results	Edit

Viewing Simulation Results

By selecting the view results screen, the user is directed to the results screen as shown in Figure 11. Numerous simulation results are available for viewing and download. The radar clutter map, Doppler, line of sight (LoS), terrain, and range information are available for display on the map screen. At the bottom of the screen is displayed the range Doppler map and the channel response¹. All the results are available for download by selecting the output files tab as shown in Figure 12. A zip file with all the results is available, or the individual files are available for

¹ The channel response is the impulse response of the channel, also known as the Green's function. A user can thus obtain the response to any transmit waveform by convolving it with the channel response. This is ideal for Fully Adaptive Radar (FAR) simulations.

download. These include kml files for display in Google Earth and a *.mat file with the simulation results in Matlab format. The inputs tab allows the user to view the simulation input values (Figure 12).

Figure 11: **RFView[™] simulation results screen.**

View Options	View Options
View Options Output Files Inputs	View Options Output Files Inputs
All Simulation Output Files (.zip) Individual Files: channel_reponse_247.png clutter_247.kml clutter_247.png doppler_247.png los_mask_247.png los_mask_247.png los_mask_map_247.kml matlabFile_247.mat range_247.kml range_247.png simulation_247.zip terrain_247.png upload_end_247.out clutter_247_cb.png los_mask_247_cb.png los_mask_247_cb.png los_mask_247_cb.png terrain_247_cb.png terrain_247_cb.png terrain_247_cb.png	Radar Latitude: 32.55081581013565Radar Longitude: -117.20513256835937Radar Altitude: 1000Radar Speed: 125Radar Heading: 0Radar Length EW: 20000Radar Cell EW: 20Radar Cell EW: 20Radar Cell NS: 20Radar Cell NS: 20Radar Length NS: 20000Radar Length NS: 20000Radar Cell NS: 20Radar Prequency: 10000Radar Pulses: 65Radar Pulses: 65Radar Duty Factor: 0.1Aimpoint Latitude: 32.69337247479041Aimpoint Longitude: -116.99295910644554Range Swath: 20Transmitter Power: 1000Antenna Size Vertical: 0.75Antenna Size Vertical: 0.25Antenna Size Vertical: 0.25Antenna Channels: 4Target(1) Latitude: 32.69202574663938Target(1) Heading: 180Target(1) Speed: 3Target(1) RCS: 40

Figure 12: RFView[™] simulation output files (left) and input parameters (right).

Example RFViewTM **Data Processing**

At the completion of the simulation, a Matlab formatted data file is available for download containing the simulation results. This provides the user with the capability to use the simulated data for their specific purposes. The contents of the Matlab data file are defined in Appendix 1 of this document.

Also available for download on the RFViewTM website is a sample Matlab processing code, range_Doppler_process_rfview_example.m. This processing code produces the range-Doppler plot shown on the RFViewTM results page from the IQ data in the Matlab data file. The IQ Data box in the Options Tab must be selected to generate the IQ data.

The algorithm performs these steps:

- 1. Re-orders the IQ data for processing
- 2. Beamforms the multi-channel data by applying the array steering vector.
- 3. Applies a motion compensation correction
- 4. Pulse compress the data in the range dimension
- 5. Scale and plot the results

Figure 13 shows the Range-Doppler plot generated using the example code for the default simulation scenario.

Figure 13: Example range-Doppler plot generated for default RFView[™] scenario.

Appendix 1

Matlab File Definition

The table below describes the elements in the $RFView^{TM}$ Matlab file that is available for download after the simulation is completed. Not all the elements may be present in the file depending on what options are selected in the simulation.

Variable	Size	Complex/Real	Description
Chan	nchan X num pulses X	complex	Complex channel
	range		response -
			clutter+targets+noise
Chan_clut	nchan X num pulses X	complex	Complex channel
	range		response - clutter
			only
Chan_targ	nchan X num pulses X	complex	Complex channel
	range		response - target only
DEM	Structure		Terrain Data
DEM.TerrainHeight	Ncells Ns x Ncells EW	real	Terrain height at each
			cell - meters
DEM.SouthmostLatitude	1	real	Latitude of south
			most cell - degrees
			North
DEM.WestmostLongitude	1	real	Longitude of west
			most cell - degrees
			East
DEM.dLat	1	real	Latitude dimension of
			each cell - degrees
DEM.dLon	1	real	Longitude dimension
			of each cell - degrees
IQ	nchan X num pulses X	complex	Complex IQ data -
	range		clutter+targets+noise
IQ_clut	nchan X num pulses X	complex	Complex IQ data-
	range		clutter only
IQ_targ	nchan X num pulses X	complex	Complex IQ data -
	range		target only
PRF	1	real	Pulse repetition
			frequency (Hz)
PathPower	Ncells Ns x Ncells EW	real	Scattered power from
			each cell
PathRange	Ncells Ns x Ncells EW	real	Range to each cell
			from radar - meters
RxArray	Structure		Description of
			receiver array

Definition of the contents of the RFViewTM **Matlab File**

RxArray.dh	1	real	horizontal spacing of
			the elements
RxArray.dv	1	real	vertical spacing of the
			elements
RxArray.Nh	1	real	Total number of
			elements in horizontal
			dimension
RxArray.Nv	1	real	Total Number of
			elements in vertical
			dimension
RxArray.NumChannels	1	real	Number of channels
RxArray.Hplane	numchannels X 1	real	Number of
			elements/channel in
			horizontal dimension
RxArray.Vplane	numchannels X 1	real	Number of
			elements/channel in
			vertical dimension
RxArray.boresight_az	numchannels X 1	real	Boresite
			(mechanical)azimuth
			of each receive
			channel - degrees N
RxArray.boresight_el	numchannels X 1	real	Boresite (mechanical)
			elevation of each
			receive channel -
			degrees from
Dr. Amora and stoon of	mum ab ann ala V 1		norizontal
KXAfray.pre_steer_az	numenanneis X I	real	Electronic steering
			azimuti angle of each
			degrees N
RyArray presteer el	numchannels X 1	real	Electronic steering
KAAnay.pre_steer_er	numenamiers X 1	Ical	elevation angle of
			each receive channel
			- degrees from
			horizontal
RxArray.sepos	numchannels x 3	real	Relative positions of
5 1			channels in
			topocentric
			coordinates
RxArray.Pattern	1	real	Receive antenna
-			pattern (uniform,
			hamming)
RxArray.fb_ratio	1	real	Receiver front/back
			ratio (dB)
RxArray.spvect	numchannels x	complex	Receiver spatial
	numchannels		steering vector

RxArray.tt_delay	numchannels x	real	True time delay
	numchannels		
TxArray	Structure		Transmit array, Same
			fields as RxArray
RxAztoCell	Ncells Ns x Ncells EW	real	Azimuth angle from
			radar to each cell -
			degrees North
RxEltoCell	Ncells Ns x Ncells EW	real	Elevation angle from
			radar to each cell -
			degrees from
			horizontal (negative
			is down)
TxFrequency	1		Radar transmit
			frequency - Hz
WGS84_SPHEROID	Structure		Structure with
			WGS84 Spheroid
			information
array_steering_v	nchannels	complex	Complex spatial
			steering vector for
			each channel along
			receiver steering
			direction; Same as
			RxArray.spvect
bandwidth	1		Radar waveform
			bandwidth - Hz
lambda	1		Radar wavelength -
	1		Meters
num_puises	1		Number of pulses
	Cture steens		Simulated
platrx	Structure		Receiver platform
			information at each
			pulse; also transmitter
			platform for
alotar lot	annah og of gulass		Inonostatic scenario.
platrx.lat	number of pulses	real	Latitude of platform
			at each pulse -
			Degrees North
platrx.ion	number of pulses	real	Longitude of platform
			at each pulse -
	1 6 1	1	Degrees East
piatrx.ngt	number of pulses	real	Height of platform at
			each pulse - meters
			above MSL
platrx.az	number of pulses	real	Azimuth/heading of
			platform at each pulse
			- Degrees North

platrx.el	number of pulses	real	Elevation angle of
			platform heading at
			each pulse - degrees
			from norizontal
alatan araad	analysis of anlass		(negative is down)
platrx.speed	number of pulses	real	Speed of platform at
platty	structure	raal	Transmitter platform
platix	structure	Tear	information for
			histotic scenario:
			same fields as platry
			structure
radar aim	Structure		Location on earth
	Stracture		radar antenna is point
			toward
radar aim.lat	1	real	Latitude of radar
_			aimpoint
radar_aim.lon	1	real	Longitude of radar
			aimpoint
radar_aim.hgt	1	real	Height of aimpoint -
			meters above ground
			level
range_bins	number range bins	real	Range bins of
			simulated data -
			meters
targets	Structure		
targets.lat	number of targets	real	Latitude of each
			target - Degrees
			North
targets.lon	number of targets	real	Longitude of each
tanaata hat	much on of tongots		Larget - Degrees East
targets.ngt	number of targets	real	Height of each target
targets az	number of targets	rool	- meters above wist
targets.az	number of targets	Ical	each target - Degrees
			North
targets.el	number of targets	real	Elevation angle of
			each target heading -
			degrees from
			horizontal (negative
			is down)
targets.speed	number of targets	real	Speed of each target -
			m/s
targets.rcs	number of targets	real	Radar cross section of
			each target - square
			meters

waveform	length waveform	complex	Time samples of
			waveform
wf_duty_factor	1	real	Waveform duty factor
			- fraction